Synergistic Post-Transcriptional Regulation of the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) by miR-101 and miR-494 Specific Binding
نویسندگان
چکیده
microRNAs (miRNAs) are a class of regulatory small non-coding molecules that control gene expression at post-transcriptional level. Deregulation of miRNA functions affects a variety of biological processes also involved in the etiology of several human mendelian and complex diseases. Recently, aberrant miRNA expression has been observed in Cystic Fibrosis (CF), an autosomal-recessive genetic disorder caused by mutations in the CFTR gene, in which a genotype-phenotype correlation is not always found. In order to determine miRNA role in CFTR post-transcriptional regulation, we searched for miR-responsive elements in the CFTR 3'-UTR. In silico analysis, performed using different computational on-line programs, identified some putative miRNAs. Both miR-101 and miR-494 synthetic mimics significantly inhibited the expression of a reporter construct containing the 3'-UTR of CFTR in luciferase assays. Interestingly, miR-101/miR-494 combination was able to markedly suppress CFTR activity by approximately 80% (p<0.001). This is one of the first in vitro studies implicating microRNAs as negative regulators of the CFTR gene expression. miRNA aberrant expression and function might explain the wide phenotypic variability observed among CF patients.
منابع مشابه
MicroRNA regulation of expression of the cystic fibrosis transmembrane conductance regulator gene.
The CFTR (cystic fibrosis transmembrane conductance regulator) gene shows a complex temporal and spatial pattern of expression that is controlled by multiple cis-acting elements interacting with the basal promoter. Although significant progress has been made towards understanding these genomic elements, there have been no reports of post-transcriptional regulation of CFTR by miRNAs (microRNAs)....
متن کاملRegulation of cystic fibrosis transmembrane conductance regulator by microRNA-145, -223, and -494 is altered in ΔF508 cystic fibrosis airway epithelium.
Expression of the cystic fibrosis transmembrane conductance regulator (CFTR) is altered in individuals with the ΔF508 CFTR mutation. We previously reported differential expression of microRNA (miRNA) in CF airway epithelium; however, the role of miRNA in regulation of CFTR expression here remains unexplored. In this study, we investigated the role of upregulated miRNAs in CFTR regulation in viv...
متن کاملA Peptide Nucleic Acid against MicroRNA miR-145-5p Enhances the Expression of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) in Calu-3 Cells.
Peptide nucleic acids (PNAs) are very useful tools for gene regulation at different levels, but in particular in the last years their use for targeting microRNA (anti-miR PNAs) has provided impressive advancements. In this respect, microRNAs related to the repression of cystic fibrosis transmembrane conductance regulator (CFTR) gene, which is defective in cystic fibrosis, are of great importanc...
متن کاملP-192: The Study of Cystic Fibrosis Transmembrane Conductance Regulator Gene Mutations and Polymorphisms in Iranian Patients with Mayer Rokitansky Kuster Hauser Syndrome
Background: Mayer - Rokitansky - Kuster - Hauser (MRKH) syndrome is characterized by congenital aplasia of the uterus and the upper part of the vagina in women showing normal development of secondary sexual characteristics and a normal 46, XX karyotype. Congenital anomaly of the female genital tract, estimated to occur in approximately 1 in every 5,000 females. It is caused by a failure of deve...
متن کاملMiR-101 and miR-144 Regulate the Expression of the CFTR Chloride Channel in the Lung
The Cystic Fibrosis Transmembrane conductance Regulator (CFTR) is a chloride channel that plays a critical role in the lung by maintaining fluid homeostasis. Absence or malfunction of CFTR leads to Cystic Fibrosis, a disease characterized by chronic infection and inflammation. We recently reported that air pollutants such as cigarette smoke and cadmium negatively regulate the expression of CFTR...
متن کامل